On the maximal condition in formal power series rings
نویسندگان
چکیده
منابع مشابه
Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings
We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite. Thus, each element of S has only finitely many factorizations as a product of two elements. For exampl...
متن کاملLeft App - Property of Formal Power Series Rings
A ring R is called a left APP-ring if the left annihilator lR(Ra) is right s-unital as an ideal of R for any element a ∈ R. We consider left APP-property of the skew formal power series ring R[[x;α]] where α is a ring automorphism of R. It is shown that if R is a ring satisfying descending chain condition on right annihilators then R[[x;α]] is left APP if and only if for any sequence (b0, b1, ....
متن کاملAutomorphisms of Formal Power Series Rings over a Valuation Ring
The aim of this paper is to report on recent work on liftings of groups of au-tomorphisms of a formal power series ring over a eld k of characteristic p to characteristic 0, where they are realised as groups of automorphisms of a formal power series ring over a suitable valuation ring R dominating the Witt vectors W(k): We show that the lifting requirement for a group of automorphisms places se...
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملOn skew formal power series
We investigate the theory of skew (formal) power series introduced by Droste, Kuske [4, 5], if the basic semiring is a Conway semiring. This yields Kleene Theorems for skew power series, whose supports contain finite and infinite words. We then develop a theory of convergence in semirings of skew power series based on the discrete convergence. As an application this yields a Kleene Theorem prov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1992
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-63-1-133-134